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Conclusion
Magnitude-corrected nonlinear fitting allows for improved estimation of the SH and 
GDT models at high b-values. This technique significantly improves the ability to 
detect regions of complex fibre architecture for which the diffusion tensor is 
insufficient. This information is critical for correctly interpreting DTI results, and in 
providing justification for the use of higher-order models on a voxel-by-voxel basis. 
This fitting technique should also be useful in other areas of the diffusion community 
that utilize the SH and/or GDT basis functions, e.g. spherical deconvolution and q-ball 
imaging.
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The simulation results in Fig. 2 show an improvement in the ability to detect 
fibre crossings using magnitude-corrected fitting at high b-values. This is 
especially true for reduced separation angles and imbalanced volume 
fractions. The performance of the algorithm drops off dramatically at 
b=3000 s/mm2 using the linear least-squares fit.

In experiments, the proportion of voxels classified as 4th-order across 
the entire brain was 4.4%, 10.8%, and 11.3%, for b=1000, 2000 and 
3000 s/mm2  respectively. The 3 clusters of 4th-order voxels (labeled in 
Fig. 3) were consistent across both subjects. In general, these became 
larger as the b-value was increased.

Fig. 4 shows Apparent Diffusion Coefficient profiles for a single voxel 
sampled from one of these regions of suspected crossings. This example 
illustrates how the shape becomes increasingly complex as b is increased.

At b=3000 s/mm2, the advantages of the higher b-value seem to be 
partially reduced by a loss in SNR caused by the longer TE. TE is limited 
primarily by the maximal gradient strength, so improved imaging hardware 
may alleviate this effect somewhat.

Simulations show that classifier performance is highly dependent on 
SNR and the number of gradient directions (data not shown). Although it 
can be summarized from these results that the b-value should be greater 
than 1000 s/mm2, a specific “optimal” b-value cannot be determined from 
this data and is likely to depend on many experimental factors. The 
simulations are available online [8] and can be modified to suit different 
experimental scenarios.

Theory

The inadequacy of the diffusion tensor model has motivated 
the development of higher-order modeling techniques 
including q-space, q-ball, and PAS-MRI [1]. These advanced 
reconstruction schemes require the acquisition of more data, 
usually in the form of additional sampling directions. 
Although increased data allows the fitting of more complex 
models, the question remains as to whether or not these 
higher-ordered models are always necessary. In voxels for 
which the underlying architecture is adequately described by 
a tensor, the use of higher-order models can actually 
introduce additional error due to over-fitting.

Alexander et al. proposed a model-selection algorithm for 
classifying voxels into categories of isotropic Gaussian, non-
isotropic Gaussian (equivalent to the diffusion tensor) and 
non-Gaussian diffusion [2]. This technique involves the fitting 
of a hierarchical set of models based on the spherical 
harmonic (SH) series, and selecting the most appropriate 
model using an f-test (Fig. 1). It performs reasonably well for 
fibres crossing at 90 degrees and in equal volume fractions, 
but suffers as the separation angle is reduced and/or the 
volume fractions become more imbalanced. Because non-
Gaussian diffusion is more apparent at high b-values [3], it 
may be possible to improve classifier performance by 
imaging at b-values greater than 1000 s/mm2. However, the 
linear-least squares algorithm commonly used to fit SH 
models performs poorly if the b-value is increased too much. 
In addition, high b-values combined with high diffusivity can 
result in signal measurements close to the noise floor. In this 
situation, magnitude bias can result in a “squashed peanut” 
artifact [4], which itself resembles non-Gaussian diffusion.

In this study we develop a nonlinear fitting routine which 
compensates for the magnitude bias in regions of low SNR. 
This method is suitable for fitting SH models at high b-
values. This should result in an improved ability to detect 
voxels for which the diffusion tensor model is insufficient.

It is possible to fit SH models nonlinearly using a procedure 
similar to Ref. 2, but it requires the use of a constrained 
algorithm to ensure that the fitted signal has no imaginary 
component. Alternatively, we can fit the even-ordered set of 
Generalized Diffusion Tensor (GDT) models without the need 
for constraints. The GDT and SH models are theoretically 
equivalent and we can easily convert between the two [5]. We 
follow the notation of Ref. 6, replacing the log-transformed 
signal column vector Yr, with the pre-transformed magnitude 
signal, Yr = [S1/S0 S2/S0 … Sm/S0]T. The magnitude of the diffusion 
equation can be written in matrix form as Yr = exp(BrXr). We 
can then use a nonlinear fitting algorithm to minimize:

Note the noise-estimation parameter, σ, which is measured 
from a background region of the images [7]. When σ=0, eq. 1 
reduces to a standard nonlinear fit. The σ  parameter 
compensates for the magnitude bias in regions of low SNR. 
This is similar to a scheme originally proposed by Jones et 
al. [4] and modified by Fobel et al. [7].

Results and Discussion

Figure 3. Fibre direction and voxel classification maps (using the magnitude-
corrected fit).

Methods
DTI data was obtained from 2 healthy volunteers using a 3T GE system with an 8
channel head coil. Imaging parameters were as follows: 55 gradient orientations, 10 b0
images, 2.6 mm isotropic voxels, and 42 slices. 3 data sets were collected sequentially 
from each subject, with b-values of 1000, 2000 and 3000 s/mm2. TE was minimized at 
each b-value, resulting in values of 85, 97 and 105 ms respectively. A brain mask was 
created by thresholding the b=1000 s/mm2  data as in Ref 2. The mean SNR across the 
entire brain mask for the b0 images was 71, 59, and 55; the reductions resulting from T2
relaxation  effects.  We  fit  GDT  models  of  orders  0, 2,  and  4  using  both  linear-least
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b=1000 s/mm2 b=2000 s/mm2 b=3000 s/mm2

1. crossing of pyramidal and transpontine tracts

2. optic radiation crossing lateral fibres of corpus callosum
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Figure 4. Apparent Diffusion Coefficient profiles for a voxel from cluster 2 in 
Fig. 3. Note how the shape becomes more complex as the b-value is increased.

Figure 2. Percentage of crossing fibres classified as 4th-order in simulations.
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Figure 1. Schematic of classification algorithm.

squares and the newly introduced magnitude-corrected nonlinear fit. F-test classification 
thresholds were set so that 99% of diffusion tensors with FA<0.9 were correctly classified 
by Monte Carlo simulations. Simulations were performed using MATLAB (Mathworks, 
Natick, MA) and the dwi-toolbox [8] for a two tensor model with various volume fractions 
and separation angles. The SNR, b-value and gradient orientations were matched to the 
clinical experiment. Simulations were repeated 10 000 times for each separation 
angle/volume fraction pair.
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